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We describe a simple continuous-time flow such that Lyapunov exponents fail to exist at nearly every point
in the phase space R2, despite the fact that the flow admits a unique natural measure. This example illustrates
that the existence of Lyapunov exponents is a subtle question for systems that are not conservative.
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I. INTRODUCTION

Scientists often compute Lyapunov exponents without ad-
dressing whether or not the exponents actually exist �1–4�.
Lyapunov exponents measure the exponential rates of con-
traction and expansion along orbits of dynamical systems.
Given a dynamical system and a randomly chosen point x in
the phase space, do Lyapunov exponents exist for the orbit of
x? In this paper we prove the surprising result that, for the
simple flow with a figure-8 attractor depicted in Fig. 1,
Lyapunov exponents do not exist for nearly every trajectory
in the phase space.

One might think that because Lyapunov exponents are
asymptotic quantities, it should follow from some ergodic
theorem that Lyapunov exponents do exist for the orbit of a
randomly chosen point. However, ergodic theorems are
stated in terms of invariant measures. The multiplicative er-
godic theorem of Oseledec �5� states that, for an invariant
measure �, Lyapunov exponents exist for the orbit of � al-
most every �a.e.� point x. Therefore, Lyapunov exponents
exist for the orbit of a randomly chosen point x with respect
to �. If the dynamical system is conservative �preserves a
measure equivalent to the Lebesgue measure�, then the mul-
tiplicative ergodic theorem does imply that Lyapunov expo-
nents exist for Lebesgue almost every point in the phase
space.

What about attractors? Suppose that the dynamical system
is dissipative and that it admits an attractor with an open
basin of attraction. Since the dynamics inside the basin are
dissipative, every invariant measure supported inside the ba-
sin must be supported on the attractor �zero away from the
attractor� and must be singular with respect to the Lebesgue
measure �supported on a set of Lebesgue measure zero�. The
multiplicative ergodic theorem does not say anything about a
point x in the basin that is not on the attractor itself.

Let ��x , t� denote a dissipative flow on Rn that admits an
attractor A with open basin of attraction U. Even though any
�-invariant measure � supported in U must be supported on
A and must be singular with respect to the Lebesgue mea-
sure, such a measure can nevertheless organize the statistics
of large sets of orbits in the basin. We call � a natural mea-
sure if there exists a set E�U of positive Lebesgue measure
such that, for x�E, � governs the statistics of the orbit of x
in the following sense. For every continuous function �or
observable� � :U→R, we have

lim
t→�

1

t
�

0

t

�„��x,s�…ds = �
U

��x�d��x� .

That is, the time average of � along the orbit of x is equal to
the spatial average of � with respect to �. It has been shown
that natural measures exist for several classes of dynamical
systems. See �6,7� for expository surveys in this direction.
Nevertheless, there exist simple dynamical systems that do
not have natural measures and there exist many complicated
dynamical systems that are not known to have natural mea-
sures.

What is the relationship between natural measures and
Lyapunov exponents? If � admits no natural measure or at
least two natural measures, it is reasonable to suspect that
Lyapunov exponents do not exist for most points in the basin
because the presence of no natural measure or at least two
natural measures indicates permanent oscillation in the flow.
Indeed, this phenomenon is well known to nonlinear scien-
tists. In Sec. IV we analyze an explicit example of a flow on
R2 that does not admit a natural measure. We prove that
Lyapunov exponents do not exist for the orbit of Lebesgue
almost every x�R2.

What if the system admits a unique natural measure? We
show that even in this case, it is possible for Lyapunov ex-
ponents to fail to exist for the orbit of Lebesgue almost every
point in the phase space. In Sec. III, we prove that the flow
depicted in Fig. 1 admits a unique natural measure but no
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FIG. 1. �Color online� The figure-8 attractor. The point p is a
saddle with more contraction than expansion, s1 and s2 are repelling
foci, and the curves �1 and �2 are invariant loops. No trajectory
that converges to the figure-8 has Lyapunov exponents except for
the trajectories that start on the figure-8.

PHYSICAL REVIEW E 78, 056203 �2008�

1539-3755/2008/78�5�/056203�6� ©2008 The American Physical Society056203-1

http://dx.doi.org/10.1103/PhysRevE.78.056203


trajectory that converges to the figure-8 has Lyapunov expo-
nents except for the trajectories that start on the figure-8.

For the examples we study, the following mechanism
causes Lyapunov exponents to fail to exist. Let x be a point
in the basin of attraction. The finite-time Lyapunov exponent
�2� for the direction of the flow perpetually oscillates as t
→�, causing the infinite-time Lyapunov exponent �3� for the
flow direction to fail to converge. The volume along the orbit
of x contracts at an exponential rate. These two properties
imply that the Lyapunov exponent computed in any direction
at x fails to converge. We present one explicit example that
admits a unique natural measure and one explicit example
that admits no natural measure. In each example, the
Lyapunov exponent fails to exist for every nonzero vector v
at every point in the basin that is not on the attractor.

We focus on two-dimensional flows with homoclinic or
heteroclinic attractors. We choose this setting to illustrate
that the mechanism described above can appear even in rela-
tively simple systems. The study of homoclinic and hetero-
clinic phenomena has a rich history. The presence of such
orbits often has significant dynamical implications. For ex-
ample, sensitivity to detuning in networks of coupled oscil-
lators can be caused by the existence of heteroclinic cycles
�8�. In general, the mechanism described above must be con-
sidered when asking about the existence of Lyapunov expo-
nents in any given system.

The nonexistence of Lyapunov exponents has significant
implications. This is especially true when a finite-time
Lyapunov exponent fluctuates about zero. Such fluctuations
are associated with the loss of shadowability of orbits �9� and
with the hypersensitivity of invariant measures to noise �10�.
Finite-time Lyapunov exponents can fluctuate on long time
scales in high-dimensional systems exhibiting “chaotic itin-
erancy” �11�.

II. THEORY OF LYAPUNOV EXPONENTS

We now review the theory of Lyapunov exponents. Con-
sider the autonomous differential equation

dx

dt
= f�x� �1�

where f :Rn→Rn. Let ��x , t� be the solution of �1� at time t
with initial condition x at time t=0. We refer to � as a flow.
Assume there exists a compact region M �Rn such that
��M , t��M for all t�0. We study the flow on M.

For x�M, v�Rn, and t	0, define


t�x,v� =
1

t
log�D��x,t�v� ,


*�x,v� = lim sup
t→�


t�x,v� ,


*�x,v� = lim inf
t→�


t�x,v� , �2�

where D denotes the spatial derivative. The value 
t�x ,v� is
the finite-time Lyapunov exponent associated with x and v

evaluated at time t. If 
*�x ,v�=
*�x ,v�, the common value


�x,v� = lim
t→�

1

t
log�D��x,t�v� �3�

is the Lyapunov exponent associated with x and v. The quan-
tities 
*�x ,v� and 
*�x ,v� are called the upper and lower
Lyapunov exponents associated with x and v. A point x
�M is said to be Lyapunov regular if there exist values

− � � 
1�x� � 
2�x� � ¯ � 
n�x�

and linear subspaces Vk�x��Rn of dimension k satisfying

�0� = V0�x� � V1�x� � V2�x� � ¯ � Vn�x� = Rn,

such that 
�x ,v�=
i�x� for every 1� i�n and for every v
�Vi�x� except for v�Vi−1�x�. The values 
i�x� are the
Lyapunov exponents associated with x.

The multiplicative ergodic theorem of Oseledec �5� states
that for a �-invariant probability measure � on M, � almost
every x is Lyapunov regular. On the set of Lyapunov regular
points, the values 
i�x� are flow invariant and depend mea-
surably on x. The functions 
i are constant � a.e. if � is
ergodic. In this case, we think of the 
i as constants and we
refer to them as the Lyapunov exponents associated with the
measure �.

Lyapunov exponents express the asymptotic regularity of
the action of the spatial derivative along orbits. One may ask
about the statistical coherence of the orbits themselves. The
notion of natural measure addresses this line of inquiry. Let �
be a �-invariant probability measure. The point x�M is said
to be � generic if for every continuous function � :M→R,
we have

lim
t→�

1

t
�

0

t

�„��x,s�…ds = �
M

��x�d��x� .

That is, the time average of � along the orbit of x is equal to
the spatial average of � with respect to �. The measure � is
said to be a natural measure if the set of �-generic points has
positive Lebesgue measure in M. Natural measures are ob-
servable in the sense that, with positive probability, the orbit
of a randomly chosen point x �in the basin� will be asymp-
totically distributed according to �.

The notion of natural measure described above is a path-
wise notion. There exist two additional commonly used no-
tions of natural measure. In the first alternative, one tracks
the statistics of an ensemble of initial data rather than the
statistics of an individual orbit. The second alternative is
based on the observation that, for some dynamical systems
with strong stochastic properties, there exist special invariant
measures with absolutely continuous conditional measures
on unstable manifolds. See �6,7,12� and ��12�, Sec. II � for
discussions about the various notions of natural measure.

Natural measures may be thought of as the phases of a
system. A change in the number of natural measures can be
interpreted as a phase transition. Blank and Bunimovich �12�
study this idea in the context of coupled maps.

We now describe two flows that exhibit the mechanism
described in the Introduction. Each flow has a unique attrac-
tor and in each case Lyapunov exponents fail to exist for
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every point in the basin that is not on the attractor. In the first
example, the attractor supports a unique natural measure that
describes the asymptotic distribution of the orbit of every
point in the phase space except for two unstable equilibria.

III. EXAMPLE 1: A UNIQUE NATURAL INVARIANT
MEASURE EXISTS

Let f :R2→R2 be the vector field defining the flow de-
picted in Fig. 1 and let ��x , t� denote the flow generated by
f. The equilibrium point p is a saddle with eigenvalues −�
and  satisfying �		0. The saddle is dissipative because
−�+�0. The stable and unstable manifolds of p coincide
and form the homoclinic loops �1 and �2. The set A
= �p���1��2 is the figure-8 attractor.

For x�R2 \ �s1 ,s2�, the orbit ��x , · � spends all of its time
near p in the limit. The � measure �p is therefore the unique
natural measure for the flow �. The orbit of every point in
the phase space �except for the two unstable foci� is asymp-
totically distributed according to �p.

Let B be all of R2 except for A, s1, and s2. We prove that
the Lyapunov exponent 
�x ,v� fails to exist for all v�0 and
for all x�B. The proof consists of two steps. First, we show
that the flow Lyapunov exponent 
(x , f�x�) does not exist
because 
*(x , f�x�)�0 and 
*(x , f�x�)=0. Second, we show
that volume contracts asymptotically at a definite exponential
rate along the orbit of x.

We give the argument for x located inside �1. The argu-
ments for points located inside �2 and outside the figure-8
are similar. For simplicity, we assume we can choose coor-
dinates such that � has the following properties. In the rect-
angle R= ��x ,y��R2 : 	x	�1 and 	y	�1�, the differential
equation dx /dt= f�x� has the linear form dx /dt=Ax with

A = 
− � 0

0 
�

�see Fig. 2�. Loop �1 is located in the first quadrant and
contains the segments ��0,y� :0�y�1� and ��x ,0� :0�x
�1�. Fix 0���1 and define transversals S1= ��1,y� :0�y
��� and S2= ��x ,1� :0�x���. The flow maps S2 into S1.
This map is given by �x ,1�� �1,ax� for some 0�a�1.

A. Completion of the argument assuming the flow Lyapunov
exponent does not exist

Fix x0 inside �1 �x0�s1�. Assume that the flow Lyapunov
exponent does not exist and let v be any nonzero vector not
parallel to f�x0�. Let ��x0 , t� be the matrix solution of the
variational equation

dw

dt
= Df„��x0,t�…w �4�

with initial data

��x0,0� = „f�x0� v… .

The determinant det���x0 , t�� satisfies

det���x0,t�� = exp
�
0

t

tr�Df„��x0,s�…�ds�det���x0,0�� .

Since

lim
t→�

1

t
�

0

t

tr�Df„��x0,s�…�ds = tr�A� =  − � ,

it follows that

det���x0,t�� � e�−��t det���x0,0��

for large values of t. Consequently, 
�x0 ,v� does not exist
because 
(x0 , f�x0�) does not exist.

B. Proof that the flow Lyapunov exponent does not exist

The structure of the local flow from S1 to S2 plays the
central role in the proof that 
*(x0 , f�x0�)�0. Let y= �1,y�
�S1. The trajectory ��y , · � is given by

��y,t� = 
e−�t

yet �
until it crosses S2. Let s=s�y� be the first time the orbit
��y , · � meets S2. We have

s�y� =
1


log�y−1�, �1„y,s�y�… = y�/.

Let �=��y� denote the time t satisfying 0� t�s�y� that mini-
mizes ���y , t��. We have

��y� =
1

 + �
log�y−1� + K1��,� ,

where K1�� ,� is a constant. Evaluating ��(y ,��y�)�, we ob-
tain

��„y,��y�…� = K2��,�y�/�+��,

where K2�� ,� is a constant. The analysis of the local flow is
complete.

Since d� /dt satisfies �4�, we have

f„��x0,t�… = D��x0,t�f�x0� . �5�

Using �5�, we have


*„x0,f�x0�… = lim inf
t→�

1

t
log�f„��x0,t�…� .

S1

S2

ϕ(yn, τn)

0

z n

yn

FIG. 2. �Color online� The flow from yn to zn.
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Define sequences �yn��S1 and �zn��S2 as follows. Let t̂
denote the time at which the orbit ��x0 , · � first crosses S1.
Let y0=�2�x0 , t̂� and y0= �1,y0�. Define z0=�(y0 ,s�y0�). We
have z0= �z0 ,1�= �y0

� ,1�, where �=� /. For n�1, let yn
= �1,yn� and zn= �zn ,1� denote the nth intersections of the
trajectory ��z0 , · � with S1 and S2, respectively. Computing yn
and zn, we have

yn = a�1−�n�/�1−��y0
�n

and zn = a��−�n+1�/�1−��y0
�n+1

.

Figure 2 illustrates the flow from yn to zn.
Set �n=��yn� and sn=s�yn�. Let qn be the time at which the

orbit ��zn , · � first crosses S1. Define the sequence of times
�Tn� by setting T0= t̂+�0 and

Tn = t̂ + 
j=0

n−1

�sj + qj� + �n

for n�1. Calculating the evolution of f�x0� along the se-
quence �Tn�, we obtain

lim
n→�

1

Tn
log�f„��x0,Tn�…� = lim

n→�

1

Tn
log���x0,Tn��

=
 − �

2
� 0.

Therefore, 
*(x0 , f�x0�)�0.
Now choose ���1. Let ��n� be a sequence of points on

the orbit of x0 such that �n→� as n→� and let tn be such
that �n=��x0 , tn�. Since f��n�→ f��� as n→�, we conclude
that

lim
n→�

1

tn
log�f„��x0,tn�…� = 0

and therefore 
*(x0 , f�x0�)=0.
The flow ��x , t� analyzed in Example 1 is not generic in

the space of smooth flows on R2 because the stable and
unstable manifolds of the hyperbolic saddle coincide. Never-
theless, homoclinic phenomena of this type commonly occur
in parametrized families of flows on R2 and often are a
source of rich dynamical structures as the parameters are
varied �13�.

IV. EXAMPLE 2: NO NATURAL INVARIANT
MEASURES EXIST

We analyze a flow with four dissipative saddles. This flow
admits no natural invariant measures and Lyapunov expo-
nents fail to exist for Lebesgue almost every point in the
phase space of the flow. Example 2 is pedagogical in nature.
We include it as a simple example in the spirit of the work of
Barreira and Schmeling �14� on nonexistence of Lyapunov
exponents in abstract dynamical systems. We thereby hope to
bring this work to the attention of the physics community.

Let S= ��x ,y��R2 :0�x�� and 0�y���. Consider the
following system of differential equations defined on S:

dx

dt
= cos�y�sin�x� − a cos�x�sin�x� ,

dy

dt
= − cos�x�sin�y� − a cos�y�sin�y� . �6�

Here a� �0,1�. Markley ��15�, p. 202� attributes the initial
study of �6� to Anosov. System �6� generates the flow �
pictured in Fig. 3. Let f�x� denote the right side of �6�. The
corners p1= �0,0�, p2= �� ,0�, p3= �� ,��, and p4= �0,�� are
saddle equilibria. The eigenvalues of the linearizations of �6�
at each of the four corners are �1=1−a and �2=−1−a. No-
tice that �1	0, �2�0, and �1+�2=−2a�0. The corners are
therefore dissipative saddles. The fifth and final equilibrium
point s= �� /2,� /2� is an unstable focus. Let V :S→R be
defined by V�x ,y�=sin�x�sin�y�. Differentiating V along tra-
jectories of �6�, we have

dV„x�t�,y�t�…
dt

= − a sin�x�t��sin�y�t��

��cos2�x�t�� + cos2�y�t��� .

Notice that dV(x�t� ,y�t�) /dt�0 with equality if and only
if (x�t� ,y�t�) is on the boundary �S of S or (x�t� ,y�t�)
= �� /2,� /2�. Every nonstationary trajectory therefore con-
verges to �S as t→�.

Let C denote the interior of S excluding s, and let z0�C.
The point z0 is not generic with respect to any measure be-
cause the orbit ��z0 , · � eventually oscillates between small
neighborhoods of the corners. Therefore, no natural invariant
measure exists. The work of Gaunersdorfer �16� implies that,
as t→�, the set of limit points of the temporal average

1

t
�

0

t

��z0,s�ds

forms a polygon in S.
For every nonzero vector v, the Lyapunov exponent


�z0 ,v� does not exist. One sees this by arguing as in the
figure-8 case.

Figure 4 provides numerical evidence that the finite-time
flow Lyapunov exponent associated with any trajectory in C
perpetually oscillates with a definite asymptotic amplitude
and therefore does not converge. We have plotted the finite-
time flow Lyapunov exponent 
t(x0 , f�x0�) for 200� t�500.

p2p1

s

p3p4

FIG. 3. �Color online� The flow on the square S= �0,��
� �0,�� generated by �6�.
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Here a=0.03 and x0 is such that ��x0 ,200�= (��+3� /2,
��+3� /2). Adapting the figure-8 analysis to the square flow,
we have 
*(x0 , f�x0�)=0 and


*„x0,f�x0�… =
�1 + �2

2
= − a .

Figure 4 is consistent with this analytical fact. We use the
coordinate transformation

z = tan
x −
�

2
� ,

w = tan
y −
�

2
�

to perform the numerical integration. This change of variable
circumvents the problems associated with integrating vector
fields near equilibria.

Example 2 extends the analysis of Gaunersdorfer �16� in
the sense that, for z0�C, we have explicitly computed the set
of limit points of the finite-time Lyapunov exponent

t(z0 , f�z0�). This set is precisely the interval �−a ,0�.

V. DISCUSSION

We return to the question that motivates this paper. Do
Lyapunov exponents exist for a randomly chosen point in the

phase space? Examples 1 and 2 show that, in the context of
attractors, there exist flows for which Lyapunov exponents
do not exist at every point in the basin that is not on the
attractor. Example 1 shows that this can happen even if the
flow admits a unique natural measure. The relationship be-
tween natural measures and Lyapunov exponents is subtle
and complex.

Mathematicians have established the existence of natural
invariant measures for many classes of chaotic systems. See
�6,7� for excellent expository surveys of this research. Ex-
ample 1 demonstrates that, even if a unique natural measure
exists, Lyapunov exponents may fail to exist at every point in
the basin that is not on the attractor. However, if a system
admits a natural measure with certain nice properties, then
Lyapunov exponents will exist for a large set of points. Tsujii
�17� proves that an ergodic invariant measure � with no zero
Lyapunov exponents and at least one positive Lyapunov ex-
ponent has absolutely continuous conditional measures on
unstable manifolds �such a measure is a natural measure� if
and only if there exists a set R with positive Lebesgue mea-
sure such that for x�R, x is � generic and the Lyapunov
exponents of x coincide with those of �. Since the measure
�p in Example 1 is natural but not smooth along the unstable
manifold, the result of Tsujii implies that the Lyapunov ex-
ponents of Lebesgue a.e. point in the basin of A cannot be
equal to −� and . Tsujii’s theorem leaves the question of the
existence of Lyapunov exponents unresolved in this case.

In the context of abstract dynamical systems, Barreira and
Schmeling �14� show that Lyapunov exponents often do not
exist. For a general class of dynamical systems that includes
subshifts of finite type, conformal repellers, and conformal
horseshoes, they prove that the set of points at which the
Birkhoff ergodic average and the Lyapunov exponents simul-
taneously do not exist has full topological entropy and full
Hausdorff dimension. This irregular set is maximally large
from the point of view of dimension theory.

In light of the examples in this paper and the work of
Tsujii, Barreira, and Schmeling, it is clear that the existence
problem for Lyapunov exponents remains a major challenge.
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